

Element	Electro- negativity	Sources	Method of Preparation
Nitrogen	3.0	Air	Liquefaction of air
Phosphorus	2.1	Phosphate rock $(Ca_3(PO_4)_2)$	$\frac{2Ca_{3}(PO_{4})_{2}+6SiO_{2}-}{6CaSiO_{3}+P_{4}O}$
		Fluorapatite $(Ca_5(PO_4)_3F)$	$\begin{array}{c} P_4 O_{10} + 10 C \rightarrow \\ 4 P + 10 C \end{array}$
Arsenic	2.0	Arsenopyrite (Fe ₃ As ₂ , FeS)	Heating arsenopyrite it the absence of air
Antimony	1.9	Stibnite (Sb ₂ S ₃)	Roasting Sb_2S_3 in air to form Sb_2O_3 and the reduction with carbon
Bismuth	1.9	Bismite (Bi ₂ O ₃), bismuth glance (Bi ₂ S ₃)	Roasting Bi_2S_3 in air to form Bi_2O_3 and the reduction with carbon

Figure 20.4: Chemical explosives are used to demolish a building in Miami, Florida.

> Nitroglycerin 硝化甘油

Blowing agents such as hydrazine, which forms nitrogen gas on decomposition, are used to produce porous plastics like these styrofoam products.

<u>Nitro</u>	gen Oxides
Nitrogen in its oxi from +1 to +5	des has an oxidation state
Compound	Oxidation State of N
NO	+ 1

N ₂ O	+1
NO	+2
N_2O_3	+3
NO_2	+4
HNO ₃	+5
	16

TABLE 20.2	Some Common Nitrogen C	ompounds	
Oxidation State of Nitrogen	Compound	Formula	Lewis Structure*
-3	Ammonia	NH ₃	н— <u>н</u> Н н
-2	Hydrazine	N_2H_4	H—N—N—H H H
-1	Hydroxylamine	NH ₂ OH	H—N—O—H H
0	Nitrogen	N_2	: N = N :
+1	Dinitrogen monoxide (nitrous oxide)	N ₂ O	: N=N=0:
+2	Nitrogen monoxide (nitric oxide)	NO	: N=0 :
+3	Dinitrogen trioxide	N_2O_3	N—N=O
+4	Nitrogen dioxide	NO ₂	: <u>0</u> — <u>N</u> =0
+5	Nitric acid	HNO ₃	: О—N—О—H : О :

A copper penny reacts with nitric acid to produce NO gas, which is immediately oxidized in air to brown NO₂.

TABLE 20.3Comparison of the BoBond Energies for Nitric Oxide and t	ond Lengths a he Nitrosyl Io	and on
	NO	NO ⁺
Bond length (pm)	115	109
Bond energy (kJ/mol)	630	1020
Bond order (predicted by MO model)	2.5	3

0		0
	20.4 The Group 6A Elements	
	29	

•				Q
TABLE 20 Preparatio	.4 Selected In for the Gro	Physical Prope up 6A Elements	erties, Sources, and	Methods of
Element	Electro- negativity	Radius of X ²⁻ (pm)	Source	Method of Preparation
Oxygen	3.5	140	Air	Distillation from liquid air
Sulfur	2.5	184	Sulfur deposits	Melted with hot water and pumped to the surface
Selenium	2.4	198	Impurity in sulfide ores	Reduction of H ₂ SeO ₄ with SO ₂
Tellurium	2.1	221	Nagyagite (mixed sulfide and telluride)	Reduction of ore with SO_2
Polonium	2.0	230	Pitchblende	
		30		

						0
Fig. 9.39: The		B ₂	C2	N ₂	01	P3
MÖ energy-	σ ₂₄ *			_	σ2 _ρ * ——	1000
level diagrams,	π ₂ ,*				к2 _p * → →	-##
bond orders,	6 By				π2, ++ ++-	-#
bond energies,	1 20	++	-++		σ2 _p −++−−	-11
and bond	σ_{21}^{*}	-1	-11	-11-	σ2,* —₩—	-11
lengths for the diatomic	6 _{3r}	-11	-11	-11	σ2, —1i—	-11
molecules $B_2 \sim F_2$. Note that	Magnetism	Para- megnetic	Dia- magnetic	Dia- magnetic	Para- magnetic	Dia- magnetic
for O_2 and F_2	Bond order	1	2	3	1	1
the σ _{2p} orbital is lower in energy than	Observed bond dissociation energy (ki/mol)	290	630	942	495	154
the π_{2p} orbitals.	Observed bond length				170	
	duo	139	131	1.00	121	143

Figure 9.40: When liquid oxygen is poured into the space between the poles of a strong magnet, it remains there until it boils away. This attraction of liquid oxygen for the magnetic field demonstrates the paramagnetism of the O_2 molecule.

Figure 20.17: (a) Crystals of rhombic sulfur. (b) Crystals of monoclinic sulfur.

0				0
	TABLE 20.5Sulfur with Vari	Commo ious Oxi	n Compounds of dation States	
	Oxidation State of Sulfur		Compounds	
	+6 +4 +2		SO ₃ , H ₂ SO ₄ , SO ₄ ²⁻ , SF ₆ SO ₂ , HSO ₃ ⁻ , SO ₃ ²⁻ , SF ₄	
	+2 0		S_{8} and all other forms of elemental sulfur	
	-2		H ₂ S, S ²	
10		45		24

				(0
TABLE 20 Group 7A	<mark>).6</mark> Trends ir Elements	Selected Phy	sical Properties of	he
Element	Electro- negativity	Radius of X^- (pm)	${\ensuremath{\mathscr{C}}}^{\ensuremath{\mathscr{C}}}(V)$ for X_2 + 2e \rightarrow 2X^-	Bond Energy of X ₂ (kJ/mol)
Fluorine	4.0	136	2.87	154
Chlorine	3.0	181	1.36	239
Bromine	2.8	185	1.09	193
Iodine	2.5	216	0.54	149
Astatine	2.2	-	—	_
		48		

	Color and	Percentage of Farth's	Melting	Boiling		Method of
Element	State	Crust	(°C)	(°C)	Sources	Preparation
Fluorine	Pale yellow gas	0.07	-220	-188	Fluorospar (CaF ₂), cryolite (Na ₃ AlF ₆), fluorapatite (Ca ₅ (PO ₄) ₃ F)	Electrolysis of molten KHF ₂
Chlorine	Yellow-green gas	0.14	-101	-34	Rock salt (NaCl), halite (NaCl), sylvite (KCl)	Electrolysis of aqueous NaCl
Bromine	Red-brown liquid	$2.5 imes 10^{-4}$	-7.3	59	Seawater, brine wells	Oxidation of Br ⁻ by Cl ₂
Iodine	Violet-black solid	3×10^{-5}	113	184	Seaweed, brine wells	Oxidation of I by electrolysis or MnO ₂

•					0
	TABLE Hydrog	20.8 Some Phys gen Halides	sical Properties of th	ie	
	НХ	Melting Point (°C)	Boiling Point (°C)	H—X Bond Energy (kJ/mol)	
	HF	-83	20	565	
	HCl	-114	-85	427	
	HBr	-87	-67	363	
	HI	-51	-35	295	
			51		

•	TABL The E of Hy Ions	E 20.9 Enthalpies an dration for th	d Entropies le Halide	٩
	x-	$\begin{array}{c} X^{-}(g) \xrightarrow{H_2O} \Sigma\\ \Delta H^{\circ}\\ \text{(kJ/mol)} \end{array}$	$\frac{X^{-}(aq)}{\Delta S^{\circ}}$ (J/K · mol)	
	F ⁻ Cl ⁻ Br ⁻ I ⁻	-510 -366 -334 -291	- 159 - 96 - 81 - 64	
		53		

•						۷
TABLE 20.10	The Known (yuacide of the H	alorenst			
Oxidation State of Halogen	Fluorine	Chlorine	Bromine	lodine*	General Name of Acids	General Name of Salts
+1	HOF	HOCI	HOBr	HOI	Hypohalous	Hypohalites,
+3	**	HOCIO	**	**	Halous	Halites,
+5	**	HOCIO ₂	HOBrO ₂	HOIO ₂	Halic	Halates, MXO
+7	**	HOCIO ₃	HOBrO ₃	HOIO ₃	Perhalic acid	Perhalates, MXO ₄

BX ₃ (X = F _c Cl,Br,J) C BF ₄ S S	$CX_4 (X = F,Cl,Br,I)$ SiF ₄ SiF ₆ ²⁻ SiCl ₄	$NX_{3} (X = F,Cl,Br,I)$ $N_{2}F_{4}$ $PX_{3} (X = F,Cl,Br,I)$ PF_{5}	OF ₂ O ₂ F ₂ OCl ₂ OBr ₂	ICI IBr BrF
	GeF ₄ GeCl ₄	PCI ₅ PBr ₅ AsF ₃ AsF ₄ SbF ₅ SbF ₅	SF ₂ SG ₂ S ₄ F ₂ S ₅ G ₂ SF ₄ SF ₆ SeF ₆ SeC ₁ SeC ₁ SeC ₁ SeC ₁ SeC ₁ SeC ₁ SeC ₁ SeC ₁ SeC ₁	BrCI CIF CIF3 BrF3 IC13 IF3 CIF5 BrF5 IF5 IF5 IF7
			TeCl ₄ TeBr ₄ Tel ₄	

•				Q
TABLE 20	.12 Selected	d Properties	of Group 8A Elemer	nts
Element	Melting Point (°C)	Boiling Point (°C)	Atmospheric Abundance (% by Volume)	Examples of Compounds
Helium Neon Argon Krypton Xenon	-270 -249 -189 -157 -112	-269 -246 -186 -153 -107	$5 \times 10^{-4} \\ 1 \times 10^{-3} \\ 9 \times 10^{-1} \\ 1 \times 10^{-4} \\ 9 \times 10^{-6}$	None None None KrF ₂ XeF ₄ , XeO ₃ , XeF ₆
		62	2	

