

Reviewing the Periodic Table Regions

- Representative elements: Groups 1A 8A filling *s* and *p* orbitals.
- Transition elements: Center of the table filling *d* orbitals
- Lanthanides, Actinides: listed separately, on the bottom of the table filling 4*f* and 5*f*

3

• Metalloids: separate metals from nonmetals

Figure 19.1: The periodic table. 1A 8A Н He 2A 3A 4A 5A 6A 7A Li Be С Ν 0 F Ne Na Mg S Cl Al Si Р Ar Fe Co Ni Cu Zn Ga Ge As Se Br Kr K Ca Sc Ti V Cr Mn Cd In Sn Sb Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Xe Te Cs Ba La Hf Та w Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Rf Ha Unh Uns Uno Une Uun Uuu Uub Fr Ra Ac Lanthanides Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ce Pr Actinides Np Am Cm Bk Cf Es Fm Md No Lr Th Pa U Pu 4

TABLE 19.1 Distribution (Mass Percent) of the 18 Most Abundant Elements in the Earth's Crust, Oceans, and Atmosphere

Element	Mass Percent	Element	Mass Percent
Oxygen	49.2	Chlorine	0.19
Silicon	25.7	Phosphorus	0.11
Aluminum	7.50	Manganese	0.09
Iron	4.71	Carbon	0.08
Calcium	3.39	Sulfur	0.06
Sodium	2.63	Barium	0.04
Potassium	2.40	Nitrogen	0.03
Magnesium	1.93	Fluorine	0.03
Hydrogen	0.87	All others	0.49
Titanium	0.58		

		unian Doug
Major Elements	Mass Percent	Trace Elements (in alphabetical orde
Oxygen	65.0	Arsenic
Carbon	18.0	Chromium
Hydrogen	10.0	Cobalt
Nitrogen	3.0	Copper
Calcium	1.4	Fluorine
Phosphorus	1.0	Iodine
Magnesium	0.50	Manganese
Potassium	0.34	Molybdenum
Sulfur	0.26	Nickel
Sodium	0.14	Selenium
Chlorine	0.14	Silicon
Iron	0.004	Vanadium
Zinc	0.003	

Alkali Metals	Sources and Methods of Frep	
Element	Source	Method of Preparation
Lithium	Silicate minerals such as spodumene, LiAl(Si ₂ O ₆)	Electrolysis of molten LiCl
Sodium	NaCl	Electrolysis of molten NaCl
Potassium	KCl	Electrolysis of molten KCl
Rubidium	Impurity in lepidolite, Li ₂ (F,OH) ₂ Al ₂ (SiO ₃) ₃	Reduction of RbOH with M and H_2
Cesium	Pollucite $(Cs_4Al_4Si_9O_{26} \cdot H_2O)$ and an impurity in lepidolite (see Fig. 19.4)	Reduction of CsOH with M_2 and H_2

Figure 19.4: Lepidolite is composed mainly of lithium, aluminum, silicon, and oxygen, but it also contains significant amounts of rubidium and cesium.

0

٠				4
TABLE 19.4	Selected Ph	ysical Properties of the A	lkali Metals	
Element	lonization Energy (kJ/mol)	Standard Reduction Potential (V) for $M^+ + e^- \rightarrow M$	Radius of M ⁺ (pm)	Melting Point (°C)
Lithium	520	-3.05	60	180
Sodium	495	-2.71	95	98
Potassium	419	-2.92	133	63
Rubidium	409	-2.99	148	39
Cesium	382	-3.02	169	29
		14		0

•		4
TABLE 19.5TypesMetals with Oxygen	of Compounds For	med by the Alkali
General Formula	Name	Examples
M ₂ O	Oxide	Li ₂ O, Na ₂ O
M_2O_2	Peroxide	Na ₂ O ₂
MO_2	Superoxide	KO_2 , RbO_2 , CsO_2
	16	Q

•	
TABLE 19.6 Selected Read	ctions of the Alkali Metals
Reaction	Comment
$2M + X_2 \rightarrow 2MX$	$X_2 =$ any halogen molecule
$4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O}$ $2\text{Na} + \text{O}_2 \rightarrow \text{Na}_2\text{O}_2$	Excess oxygen
$M + O_2 \rightarrow MO_2$	M = K, Rb, or Cs
$2M + S \rightarrow M_2S$ 6Li + N ₂ $\rightarrow 2Li_3N$	Li only
$12M + P_4 \rightarrow 4M_3P$	·
$2M + H_2 \rightarrow 2MH$ $2M + 2H_2O \rightarrow 2MOH + H_2$	
$2M + 2H^+ \rightarrow 2M^+ + H_2$	Violent reaction!
	17 🧶

(left) Hydrogen gas being used to blow soap bubbles. (right) As the bubbles float upward, they are lighted using a candle on a long pole. The orange flame is due to the heat from the reaction of hydrogen with the oxygen in the air that excites sodium ions in the soap solution.

Element (pm) First Second $M^{2+} + 2e^- \rightarrow M$ Sour Beryllium ~30 900 1760 -1.70 Beryl (BerALSi_(O_{12})) (BerALSi_(O_{12})) -1.70 Beryl	rce Prepara
Beryllium ~30 900 1760 -1.70 Beryl (Be ₁ Al ₂ Si ₂ O ₁₂)	
	Electroly molten E
Magnesium 65 738 1450 -2.37 Magnesite (MgC dolomite (MgCC camalitie (MgCl	CO_3), Electroly $O_3 \cdot CaCO_3$), molten M $I_2 \cdot KCI \cdot 6H_2O$)
Calcium 99 590 1146 -2.76 Various minerals CaCO ₃	containing Electroly molten C
Strontium 113 549 1064 -2.89 Celestite (SrSO ₄) strontianite (SrC), Electroly CO ₃) molten S
Barium 135 503 965 -2.90 Baryte (BaSO ₄), witherite (BaCO	Electroly molten E
	s of ore) Electroly

Figure 19.6: (a) Solid BeCl₂ can be visualized as being formed from many BeCl₂ molecules, where lone pairs on the chlorine atoms are used to bond to the bervllium atoms in adjacent BeCl₂ molecules. (b) The extended structure of solid BeCl₂. (c) The balland-stick model of the extended structure.

.

•	4
TABLE 19.8 Selected Reactions of	f the Group 2A Elements
Reaction	Comment
$M + X_2 \rightarrow MX_2$	$X_2 =$ any halogen molecule
$2M + O_2 \rightarrow 2MO$ $M + S \rightarrow MS$	Ba gives BaO ₂ as well
$3M + N_2 \rightarrow M_3N_2$	High temperatures
$6M + P_4 \rightarrow 2M_3P_2$	High temperatures
$M + H_2 \rightarrow MH_2$	M = Ca, Sr, or Ba; high temperatures; Mg at high pressure
$\begin{array}{l} M+2H_2O \rightarrow M(OH)_2+H_2 \\ M+2H^+ \rightarrow M^{2+}+H_2 \end{array}$	M = Ca, Sr, or Ba
$Be + 2OH^- + 2H_2O \rightarrow Be(OH)_4^{2-} + H_2$	2
55 C	26 🛞

Ion Exchange Ca²⁺ and Mg²⁺ are often removed during ion exchange, releasing Na⁺ into solution. • Ion exchange resin: large molecules that have many ionic sites. 27

•		4
	19.5 The Group 3A Elements	
	29	0

•					4
TABLE 19.9	Selected Pl	hysical Propertie	s, Sources, and Methor	ds of Preparation for t	he Group 3A Elements
Element	Radius of M ³⁺ (pm)	lonization Energy (kJ/mol)	${\mathbb S}^{\circ}(V)$ for $M^{3+} + 3e^- \to M$	Sources	Method of Preparation
Boron	20	798	-	Kernite, a form of borax (Na ₂ B ₄ O ₇ · 4H ₂ O)	Reduction by Mg or H ₂
Aluminum	51	581	-1.71	Bauxite (Al ₂ O ₃)	Electrolysis of Al ₂ O ₃ in molten Na ₃ AlF ₆
Gallium	62	577	-0.53	Traces in various minerals	Reduction with H ₂ or electrolysis
Indium	81	556	-0.34	Traces in various minerals	Reduction with H ₂ or electrolysis
Thallium	95	589	0.72	Traces in various minerals	Electrolysis
			30		0

Gallium metal has such a low melting point $(30^{\circ}C)$ that it melts from the heat of a hand.

1

		4
l	TABLE 19.10 Selected Reactions of the	ne Group 3A Elements
	Reaction	Comment
	$2M + 3X_2 \rightarrow 2MX_3$	X_2 = any halogen molecule; Tl gives TIX as well, but no TII ₃
	$4M + 3O_2 \rightarrow 2M_2O_3$	High temperatures; Tl gives Tl ₂ O as well
	$2M + 3S \rightarrow M_2S_3$	High temperatures; Tl gives Tl ₂ S as well
	$2M + N_2 \rightarrow 2MN$	M = Al only
	$2M + 6H^+ \rightarrow 2M^{3+} + 3H_2$	$M = Al, Ga, or In; Tl gives Tl^+$
	$2M + 2OH^- + 6H_2O \rightarrow 2M(OH)_4^- + 3H_2$	M = Al or Ga
	33	۲

TABLE 19.11 Selected Physical Properties, Sources, and Methods of Preparation for the Group 4A Elements

Element	Electronegativity	Melting Point (°C)	Boiling Point (°C)	Sources	Method of Preparation
Carbon	2.5	3727 (sublimes)	-	Graphite, diamond, petroleum, coal	-
Silicon	1.8	1410	2355	Silicate minerals, silica	Reduction of K_2SiF_6 with Al, or reduction of SiO_2 with Mg
Germanium	1.8	937	2830	Germanite (mixture of copper, iron, and germanium sulfides)	Reduction of GeO_2 with H_2 or C
Tin	1.8	232	2270	Cassiterite (SnO ₂)	Reduction of SnO2 with C
Lead	1.9	327	1740	Galena (PbS)	Roasting of PbS with O_2 to form PbO ₂ and then reduction with C
1			35		0

•		
	TABLE 19.1Strengths ofSi—O Bonds	2 C—C, Si—Si, and S
	Bond	Bond Energy (kJ/mol)
	C—C Si—Si Si—O	347 340 452
		36

Lead (II) oxide, known as *litharge*.

•	4
TABLE 19.13 Selected R Elements F	leactions of the Group 4A
Reaction	Comment
$M + 2X_2 \rightarrow MX_4$	X_2 = any halogen molecule; M = Ge or Sn; Pb gives PbX ₂
$M + O_2 \rightarrow MO_2$	M = Ge or Sn; high temperatures; Pb gives PbO or Pb_3O_4
$M + 2H^+ \rightarrow M^{2+} + H_2$	M = Sn or Pb

38

Inert Pair Effect

The tendency for the heavier elements of Groups 3A and 4A to exhibit lower oxidation states as well as their expected oxidation states.

•Group 3A +1 and +3 oxidation states •Group 4A +2 and +4 oxidation states

0

39