

•	All nuclides with $Z \ge -$ are unstable with respective to radioactive decay.
.	Light nuclides are stable when neutron/proton $$ 1.
	Heavy nuclides are stable when neutron/proton > 1 (which increases with Z).
*	某些質子數與中子數的組合似乎特別穩定,通常 具偶數質數與偶數中子的組合較具奇數者為穩定
÷	某些質子數與中子數會形成特別穩定之 nuclides

These magic numbers are 2, 8, 20, 28, 50, 82, & 126.

 TABLE 18.1
 Number of Stable Nuclides Related to Numbers of Protons and Neutrons

Number of Protons	Number of Neutrons	Number of Stable Nuclides	Examples
Even	Even	168	¹² ₆ C, ¹⁶ ₈ O
Even	Odd	57	¹³ ₆ C, ⁴⁷ ₂₂ Ti
Odd	Even	50	¹⁹ ₉ F, ²³ ₁₁ Na
Odd	Odd	4	² ₁ H, ⁶ ₃ Li

E

N.

100

100

Process	Change in A	Change in <i>Z</i>	Change in Neutron/Proton Ratio	Example
β -particle (electron) production	0	+1	Decrease	$^{227}_{89}Ac \longrightarrow ^{227}_{90}Th + ^{0}_{-1}e$
Positron production	0	-1	Increase	$^{13}_{7}N \longrightarrow ^{13}_{6}C + ^{0}_{1}e$
Electron capture	0	-1	Increase	$^{73}_{33}As + {}^{0}_{-1}e \longrightarrow {}^{73}_{32}Ge$
α -particle production	-4	-2	Increase	$^{210}_{84}$ Po \longrightarrow $^{206}_{82}$ Pb + $^{4}_{2}$ He
γ-ray production	0	0	-	Excited nucleus> ground state nucleus
Spontaneous fission	-	-	-	$\overset{\text{D4}}{_{98}}Cf \longrightarrow \text{lighter nuclides } + \text{neutrons}$

The rate of decay is proportional to the number of nuclides. This represents a process. $Rate = -\frac{\Delta N}{\Delta t} = kN$ $\ln(\frac{N}{N_0}) = -kt$ half - life $t_{1/2} = \frac{\ln(2)}{k} = \frac{0.693}{k}$

sample of strontium-90 over time. Note that the half-life is a constant 28.8 years.

Fig. 18.4: The change in the amount of Mo-99 with time. $(t_{1/2} = 67 \text{ h})$

TABLE 18.3 The Half-L	Lives of Nuclides in the $\frac{238}{92}$ U	Decay Series
Nuclide	Particle Produced	Half-Life
Uranium-238 (²³⁸ ₉₂ U)	α	$4.51\times 10^9 \text{ years}$
Thorium-234 (²³⁴ ₉₀ Th)	β	24.1 days
Protactinium-234 (²³⁴ ₉₁ Pa)	β	6.75 hours
Uranium-234 (²³⁴ ₉₂ U)	α	$2.48\times 10^5~{\rm years}$
Thorium-230 (²³⁰ ₉₀ Th)	α	$8.0 imes 10^4$ years
Radium-226 (226 Ra)	α	$1.62 imes 10^3$ years
Radon-222 (²²² ₈₆ Rn)	α	3.82 days
Polonium-218 (²¹⁸ ₈₄ Po)	α	3.1 minutes
Lead-214 (²¹⁴ ₈₂ Pb)	β	26.8 minutes
Bismuth-214 (²¹⁴ ₈₃ Bi)	β	19.7 minutes
Polonium-214 (²¹⁴ ₈₄ Po)	α	$1.6 imes 10^{-4}$ second
Lead-210 (²¹⁰ ₈₂ Pb)	β	20.4 years
Bismuth-210 (²¹⁰ ₈₃ Bi)	β	5.0 days
Polonium-210 (²¹⁰ ₈₄ Po)	α	138.4 days
↓ Lead-206 (²⁰⁶ / ₈₂ Pb)	_	Stable

Nuclear Transformation

m

The change of one element into another.

In 1919, Lord Rutherford observed the first nuclear transformation:

Irene Curie and Frederick Joliot (1935 Nobel Laureate in Chemistry) :

 $^{27}_{13}$ Al+ $^{4}_{2}$ He \rightarrow^{30}_{15} P+ $^{1}_{0}$ n

Over the years, many other nuclear transformations have been achieved, mostly using particle accelerators.
 By using neutron and positive-ion bombardment, scientists have been able to extend the period table.
 西元 1940年之前,最重的已知元素為
 西元 1940年,利用中子與鈾-238 撞擊產生錼 (Np, Z = 93)
 238 U+¹₀n→239 U→239 Np+⁰₉₃ Np+⁰₋₁e
 自西元 1940年後,Z = 93~112 之超鈾元素 (transuranium elements) 已被合成出,其中許多之半衰期甚短。

TABLE 18.4	8.4 Syntheses of Some of the Transuranium Elements	
Element	Neutron Bombardment	Half-Life
Neptunium		
(Z = 93)	$^{238}_{92}U + ^{1}_{0}n \longrightarrow ^{239}_{93}Np + ^{0}_{-1}e$	2.35 days $\binom{239}{93}$ Np)
Plutonium	92 · 0 · 95 I · I	V (95 17
(Z = 94)	$^{239}_{93}$ Np $\longrightarrow ^{239}_{94}$ Pu + $^{0}_{-1}$ e	24,400 years (²³⁹ ₉₄ Pu)
Americium		
(Z = 95)	$^{239}_{94}$ Pu + 2 $^{1}_{0}$ n \longrightarrow $^{241}_{94}$ Pu \longrightarrow $^{241}_{95}$ Am + $^{0}_{-1}$ e	458 years (²⁴¹ Am)
Element	Positive-Ion Bombardment	Half-Life
Curium		
(Z = 96)	$^{239}_{94}$ Pu + $^{4}_{2}$ He \longrightarrow $^{242}_{96}$ Cm + $^{1}_{0}$ n	163 days $\binom{242}{96}$ Cm)
Californium		• ()0 /
(Z = 98)	$^{242}_{96}$ Cm + $^{4}_{2}$ He $\longrightarrow ^{245}_{98}$ Cf + $^{1}_{0}$ n	44 minutes (²⁴⁵ ₉₈ Cf)
	or $^{238}_{92}$ U + $^{12}_{6}$ C \longrightarrow $^{246}_{98}$ Cf + 4 $^{1}_{0}$ n	
Rutherfordium		
(Z = 104)	$^{249}_{98}Cf + {}^{12}_{6}C \longrightarrow {}^{257}_{104}Rf + 4 {}^{1}_{0}n$	
Dubnium	A40	
(Z = 105)	$^{249}_{98}Cf + ^{15}_{7}N \longrightarrow ^{200}_{105}Db + 4^{1}_{0}n$	
Seaborgium	240	
(Z = 106)	249 Cf + 18 O \longrightarrow 263 Sg + 4 n	

Fig. 18.6: Schematic diagram of a linear accelerator, which uses a changing electric field to accelerate a positive ion along a linear path.

Fig. 18.7: A schematic representation of a Geiger-Müller counter. The high-energy radioactive particle enters the window and ionizes Ar atoms along its path. The resulting ions and electrons produce a momentary current pulse, which is amplified and counted.

Brigham Young researcher Scott Woodward taking a bone sample for carbon-14 dating at an archeological site in Egypt.

100

Medical Applications of Radioactivity
provides sensitive and noninvasive methods for:
- learning about biological systems
- detection of disease
- monitoring the action and effectiveness of drugs

- early detection of pregnancy
- etc.

例如: I-131 可用以偵測治療甲狀腺疾病 (食入少量Na¹³¹I)

TI-201 及 Tc-99m 可用於評估心肌之破壞程度

Ass of	
· · · ·	

Fig. 18.8: After consumption of Na¹³¹I, the patient's thyroid is scanned for radioactivity levels to determine the efficiency of iodine absorption. (left) A normal thyroid. (right) An enlarged thyroid.

Nuclide	Half-Life	Area of the Body Studie
¹³¹ I	8.1 days	Thyroid
⁵⁹ Fe	45.1 days	Red blood cells
⁹⁹ Mo	67 hours	Metabolism
³² P	14.3 days	Eyes, liver, tumors
⁵¹ Cr	27.8 days	Red blood cells
⁸⁷ Sr	2.8 hours	Bones
^{99m} Tc	6.0 hours	Heart, bones, liver, and lun
¹³³ Xe	5.3 days	Lungs
²⁴ Na	14.8 hours	Circulatory system

18.5 Thermodynamic Stability of the Nucleus

● Thermodynamic stability of a nucleus: 計算此原子核若完 全由質子及中子組合形成產生之位能變化 Consider a hypothetical process: $8 {}_{0}^{1}n + 8 {}_{1}^{1}H \rightarrow {}_{8}^{16}O$ Mass of $(8 {}_{0}^{1}n + 8 {}_{1}^{1}H) = 8(1.67493 \times 10^{-24} g) + 8(1.67262 \times 10^{-24} g)$ $= 2.67804 \times 10^{-23} g$ Mass of ${}_{8}^{16}O$ nucleus $= 2.65535 \times 10^{-23} g$ $\Delta m = -2.269 \times 10^{-25} g/nucleus = -0.1366 g/mol$ **Energy and Mass**

When a system gains or loses energy it also gains or loses a quantity of mass.

 $\Delta E = \Delta mc^{2} \qquad \frac{\Delta E}{c^{2}} = \Delta m$ If ΔE is negative, mass is lost from the system. For 前例: $8 {}_{0}^{1}$ n + $8 {}_{1}^{1}$ H $\rightarrow {}_{8}^{16}$ O $\Delta E = -(1.366 \times 10^{-4} \text{ kg/mol})(3.00 \times 10^{8} \text{ m/s})^{2} = -1.23 \times 10^{13} \text{ J/mol}$ ΔE per ${}_{8}^{16}$ O nucleus = $-2.04 \times 10^{-11} \text{ J/nucleus}$ $= -1.28 \times 10^{2} \text{ MeV/nucleu s}$ ΔE per nucleon for ${}_{8}^{16}$ O = -7.98 MeV/nucleo n

Nuclear Fission and Fusion

Fusion (核融合): Combining two light nuclei to form a heavier, more stable nucleus.

 ${}_{2}^{3}\text{He} + {}_{1}^{1}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{0}\text{e}$

Fission (核分裂): Splitting a heavy nucleus into two nuclei with smaller mass numbers.

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + {}^{1}_{0}n$$

Fig. 18.10: Both fission and fusion produce more stable nuclides and are thus exothermic.

Key Parts of a Fission Reactor

Reactor Core: $3\% \frac{235}{92}U + moderator and control rods.$

- Uranium has been enriched (天然鈾只含~0.7%) and is housed in cylinders.
- Moderator surrounds the cylinders to slow down the neutrons so that the uranium fuel can capture them more efficiently.
- Control rods, composed of substances that absorb neutrons, are used to regulate the power level of the reactor.

Coolant

Containment Shell

Breeder Reactors

Fissionable fuel is produced while the reactor runs ($^{235}_{92}$ U is split, giving neutrons for the creation of $^{239}_{94}$ Pu ; change nonfissionable 238 U to fissionable 239 Pu):

One problem involves the hazards in handling Pu, which flames on contact with air and is very toxic.

TABLE 18.6	Effects of Short-Term Exposures to Radiation	
Dose (rem)	Clinical Effect	
0–25 25–50 100–200 500	Nondetectable Temporary decrease in white blood cell counts Strong decrease in white blood cell counts Death of half the exposed population within 30 days after e	xposure
單位: 1 Rö 1 rei	 intgen (R) = the quantity of X-ray or γ-ray radiation delivered to 0.001293 g of air, such that the ions produced in the air carry 3.34 xl 0⁻¹⁰ C of charge. m (röntgen equivalent man) = a dose of any radiation that has the same effect of 1R 	
1 mi	$rem = 10^{-3} rem$	
# of rems	= ($\#$ of rads) ×RBE	
RBE: rela	tive effectiveness of the radiation in causing	
biol	logical damage	1.15

TABLE 18.7 Typical Radiation Exposures for a Person Living in the United States (1 millirem = 10 ⁻³ rem)			
(r	Exposure nillirems/year)		
Cosmic radiation	50		
From the earth	47		
From building			
materials	3		
In human tissues	21		
Inhalation of air	5		
Total from natural			
sources	126		
X-ray diagnosis	50		
Radiotherapy	10		
Internal diagnosis/			
therapy	1		
Nuclear power indus	stry 0.2		
TV tubes, industrial			
wastes, etc.	2		
Radioactive fallout	4		
Total from human			
activities	67		
Total	193		

after a certain dosage.

