

Common Ion Effect

共同離子效應: The shift in equilibrium that occurs because of the addition of an ion already involved in the equilibrium reaction.

 $AgCI(s) \leftrightarrow Ag^+(aq) + CI^-(aq)$

adding NaCl(aq) shifts equilibrium position

對多質子酸而言, the common ion effect 亦是 其 $K_{a1} > K_{a2} > K_{a3}$.. 之因素

Sample exercise 15.1

Acid-Base Equlibria

15.1 Solutions of Acids or Bases Containing a Common Ion **15.2 Buffered Solutions**

Key Points on Buffered Solutions

- 1. They are weak acids or bases containing a common ion.
- 2. After addition of strong acid or base, deal with stoichiometry first, then equilibrium.

Henderson-Hasselbalch Equation

Useful for calculating pH when the [A⁻]/[HA] ratios are known.

$$pH = pK_a + \log([A^-]/[HA]) =$$

 $pK_a + \log([base]/[acid])$

Buffered Solution Characteristics

- Buffers contain relatively large amounts of weak acid and corresponding base.
- Added H⁺ reacts to completion with the weak base.
- Added OH⁻ reacts to completion with the weak acid.
- The pH is determined by the ratio of the concentrations of the weak acid and weak base.

Buffering Capacity

represents the amount of H⁺ or OH⁻ the buffer can absorb without a significant change in pH

15.3 Buffering Capacity

TABLE 15	1 Change in [C	- 0 -1//HC H 0 -1 6	or Two Solutions	When			
1ABLE 13.1 Change in $[c_2n_3o_2]$ [[$(a_2n_3o_2)$] for two solutions when 0.01 mol H ⁺ is Added to 1.0 L of Each							
Solution	$\left(\frac{[\textbf{C}_2\textbf{H}_3\textbf{O}_2^-]}{[\textbf{H}\textbf{C}_2\textbf{H}_3\textbf{O}_2]}\right)_{\text{orig}}$	$\left(\frac{[\textbf{C}_2\textbf{H}_3\textbf{O}_2^-]}{[\textbf{H}\textbf{C}_2\textbf{H}_3\textbf{O}_2]}\right)_{\text{new}}$	Change	Percent Change			
A	$\frac{1.00\ M}{1.00\ M} = 1.00$	$\frac{0.99M}{1.01M} = 0.98$	$1.00 \rightarrow 0.98$	2.00%			
В	$\frac{1.00\ M}{0.01\ M} = \ 100$	$\frac{0.99M}{0.02M} = 49.5$	$100 \rightarrow 49.5$	50.5%			

11

Titration (pH) Curve

酸鹼滴定曲線: A plot of pH of the solution being analyzed as a function of the amount of titrant added.

當量點: Equivalence (stoichiometric) point: Enough titrant has been added to react exactly with the solution being analyzed.

12.0

10.0

8.0

6.0

4.0

2.0

0 10 20 30 40

Hq

 $K_{\rm a} = 10^{-10}$

 $K_{\rm a} = 10^{-8}$

 $K_{\rm a} = 10^{-6}$

 $K_{\rm a} = 10^{-4}$

 $K_{\rm a} = 10^{-2}$

Fig. 15.4: The pH curves for

the titrations of

50.0-mL

samples of

values with

0.10~M acids

with various K_{a}

0.10 *M* NaOH.

The strength of

significant effect

on the shape of

the acid has a

its pH curve.

Methyl orange indicator is yellow in basic solution and red in acidic solution.

甲基橙

Solubility vs. Solubility Product

"Solubility"(溶解度) = s = concentration of Bi₂S₃ that dissolves, which in pure water equals 1/2[Bi³⁺] or 1/3[S²⁻].

 K_{sp} is constant (at a given temperature) s is variable (especially with a common ion present)

Ionic Solid	K _{sp} (at 25°C)	Ionic Solid	K _{sp} (at 25°C)	Ionic Solid	K _{sp} (at 25°C)
Fluorides		Hg ₂ CrO ₄ *	$2 imes 10^{-9}$	Co(OH),	$2.5 imes10^{-16}$
BaF ₂	2.4×10^{-5}	BaCrO ₄	8.5×10^{-11}	Ni(OH) ₂	1.6×10^{-16}
MgF ₂	6.4×10^{-9}	Ag ₂ CrO ₄	9.0×10^{-12}	Zn(OH) ₂	4.5×10^{-17}
PbF ₂	4×10^{-8}	PbCrO ₄	2×10^{-16}	Cu(OH) ₂	$1.6 imes 10^{-19}$
SrF ₂	7.9×10^{-10}			Hg(OH) ₂	3×10^{-26}
CaF ₂	4.0×10^{-11}	Carbonates		Sn(OH) ₂	3×10^{-27}
		NiCO ₃	1.4×10^{-7}	Cr(OH) ₃	6.7×10^{-31}
Chlorides		CaCO ₃	8.7×10^{-9}	Al(OH) ₃	2×10^{-32}
PbCl ₂	1.6×10^{-5}	BaCO ₃	1.6×10^{-9}	Fe(OH) ₃	4×10^{-38}
AgCl	$1.6 imes 10^{-10}$	SrCO ₃	7×10^{-10}	Co(OH) ₃	2.5×10^{-43}
Hg ₂ Cl ₂ *	1.1×10^{-18}	CuCO ₃	2.5×10^{-10}		
		ZnCO ₃	2×10^{-10}	Sulfides	
Bromides		MnCO ₃	8.8×10^{-11}	MnS	2.3×10^{-13}
PbBr ₂	4.6×10^{-6}	FeCO ₃	2.1×10^{-11}	FeS	3.7×10^{-19}
AgBr	5.0×10^{-13}	Ag ₂ CO ₃	8.1×10^{-12}	NiS	3×10^{-21}
Hg2Br2*	1.3×10^{-22}	CdCO ₃	5.2×10^{-12}	CoS	5×10^{-22}
		PbCO ₃	1.5×10^{-15}	ZnS	2.5×10^{-22}
Iodides		$MgCO_3$	6.8×10^{-6}	SnS	1×10^{-26}
PbI ₂	1.4×10^{-8}	Hg ₂ CO ₃ *	9.0×10^{-15}	CdS	1.0×10^{-28}
AgI	1.5×10^{-16}			PbS	7×10^{-29}
Hg ₂ I ₂ *	4.5×10^{-29}	Hydroxides		CuS	8.5×10^{-45}
		Ba(OH) ₂	5.0×10^{-3}	Ag ₂ S	$1.6 imes 10^{-49}$
Sulfates		Sr(OH) ₂	3.2×10^{-4}	HgS	1.6×10^{-54}
CaSO ₄	6.1×10^{-5}	Ca(OH) ₂	1.3×10^{-6}		
Ag ₂ SO ₄	1.2×10^{-5}	AgOH	2.0×10^{-8}	Phosphates	
SrSO ₄	3.2×10^{-7}	Mg(OH) ₂	8.9×10^{-12}	Ag_3PO_4	$1.8 imes 10^{-18}$
PbSO ₄	1.3×10^{-8}	Mn(OH) ₂	2×10^{-13}	$Sr_3(PO_4)_2$	1×10^{-31}
$BaSO_4$	1.5×10^{-9}	Cd(OH) ₂	5.9×10^{-15}	$Ca_3(PO_4)_2$	1.3×10^{-32}
		Pb(OH) ₂	1.2×10^{-15}	Ba ₃ (PO ₄) ₂	6×10^{-39}
Chromates		Fe(OH) ₂	1.8×10^{-15}	Pb ₃ (PO ₄) ₂	1×10^{-54}
SrCrO ₄	3.6×10^{-5}				

TABLE 15.5 Calculated Solubilities for CuS, Ag ₂ S, and Bi ₂ S ₃ at 25°C					
Salt	K _{sp}	Calculated Solubility (mol/L)			
CuS	$8.5 imes 10^{-45}$	9.2×10^{-23}			
Ag ₂ S	$1.6 imes10^{-49}$	$3.4 imes 10^{-17}$			
Bi ₂ S ₃	$1.1 imes 10^{-73}$	$1.0 imes 10^{-15}$			

Precipitation of bismuth sulfide (Bi_2S_3) .

32

29

From left to right, cadmium sulfide, chromium(III) hydroxide, aluminum hydroxide, and nickel(II) hydroxide.

Complex lons Complex lon (錯合離子): A charged species consisting of a metal ion surrounded by ligands (Lewis bases). Coordination Number (配位數): Number of ligands attached to a metal ion. (Most common are 6, 4, and 2.) Formation (Stability) Constants: The equilibrium constants characterizing the stepwise addition of ligands to metal ions.

39

