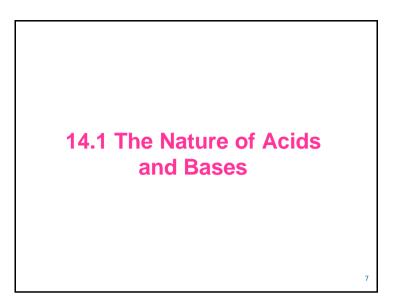


Common household substances that contain acids and bases. Vinegar is a dilute solution of acetic acid. Drain cleaners contain strong bases such as sodium hydroxide.


一些酸 & 鹼的性質

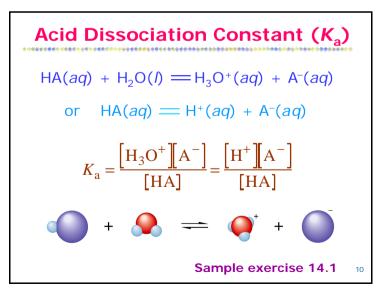
	Acids	Bases
Change colors of indicators, e.g., litmus turns from blue to red Produce CO2 when added to limestone Neutralize basesChange colors of indicators, e.g., litmus turns from red to blueSome acidic substances Vinegar, tomatoes, citrus fruits, carbonated beverages, black coffee,Neutralize basesSome acidic substances Vinegar, tomatoes, citrus fruits, carbonated beverages, black coffee,Some basic substances Household ammonia, baking soda, soap, detergents, milk of magnesia,	Sour taste	Bitter taste
litmus turns from blue to red litmus turns from red to blue Produce CO2 when added to litmus turns from red to blue litmestone Neutralize acids Some acidic substances Neutralize acids Vinegar, tomatoes, citrus fruits, carbonated beverages, black coffee, Some basic substances	React with active metals to give H ₂	Slippery feeling
Produce CO2 when added to limestone Neutralize bases Some acidic substances Vinegar, tomatoes, citrus fruits, carbonated beverages, black coffee, soap, detergents, milk of magnesia,	Change colors of indicators, e.g.,	Change colors of indicators, e.g.,
limestoneNeutralize basesNeutralize acidsNeutralize basesNeutralize acidsSome acidic substancesSome basic substancesVinegar, tomatoes, citrus fruits, carbonated beverages, black coffee,Household ammonia, baking soda, soap, detergents, milk of magnesia,	litmus turns from blue to red	litmus turns from red to blue
Neutralize bases Neutralize acids Some acidic substances Some basic substances Vinegar, tomatoes, citrus fruits, carbonated beverages, black coffee, soap, detergents, milk of magnesia,	Produce CO ₂ when added to	
Some acidic substancesSome basic substancesVinegar, tomatoes, citrus fruits, carbonated beverages, black coffee,Household ammonia, baking soda, soap, detergents, milk of magnesia,	limestone	
Vinegar, tomatoes, citrus fruits, carbonated beverages, black coffee, soap, detergents, milk of magnesia,	Neutralize bases	Neutralize acids
carbonated beverages, black coffee, soap, detergents, milk of magnesia,	Some acidic substances	Some basic substances
	Vinegar, tomatoes, citrus fruits,	Household ammonia, baking soda,
	carbonated beverages, black coffee,	soap, detergents, milk of magnesia,
gastric fluid, vitamin C, aspirinoven cleaners, lye, drain cleaners	gastric fluid, vitamin C, aspirin	oven cleaners, lye, drain cleaners

Common acids					
Name	Strength	Use			
Sulfuric acid	Strong	Cleaning steel, car batteries, making plastics, dyes, fertilizers			
Hydrochloric acid	Strong	Cleaning metals and brick mortar			
Nitric acid	Strong	Making fertilizers, explosives, plastics			
Phosphoric acid	Moderate	Making fertilizers, detergents, food additives			
Acetic acid	Weak	Vinegar			
Propionic acid	Weak	Swiss cheese			
Citric acid	Weak	Fruits			
Carbonic acid	Weak	Carbonated beverages			
Boric acid	Weak	Eye drops, mild antiseptic			

Common bases				
Name	Strength	Use		
Sodium hydroxide	Strong	Drain cleaner, producing aluminum, rayon, soaps and detergents		
Potassium hydroxide	Strong	Producing soaps, detergents, fertilizers		
Calcium hydroxide	Strong	Producing bleaching powder, paper and pulp, softening water		
Ammonia	Weak	Producing fertilizers, explosives, plastics, insecticides, detergents		
Sodium bicarbonate	Weak	Antacid		
Sodium carbonate	Weak	Detergents, glass-making		

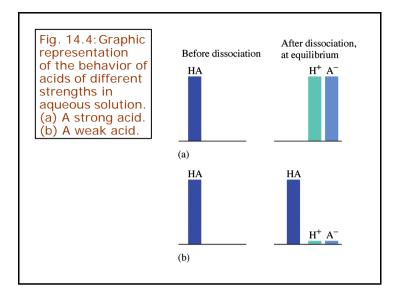
Models of Acids and Bases

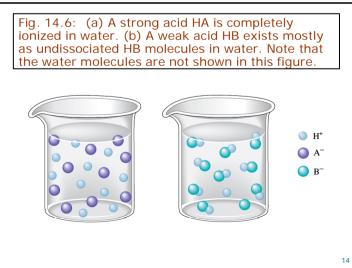
Arrhenius concept:

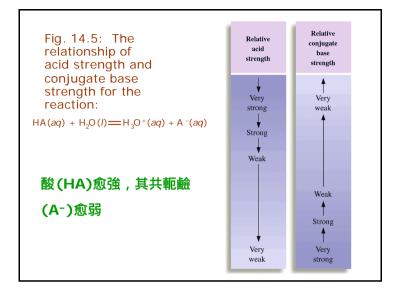

Acids produce H⁺ in aqueous solution. Bases produce OH⁻ ion.

Brønsted-Lowry model:

Acids are proton (H⁺) donors. Bases are proton acceptors.


 $\begin{array}{rrr} HCI \,+\, H_2O \,\rightarrow\, C\, I^- \,+\, H_3O^+ \\ acid & base \end{array}$


Conjugate Acid/Base Pairs				
HA(<i>aq</i>) _{Acid}	+ H ₂ O(<i>I</i>) = Base	──H ₃ O+(<i>aq</i>) Conjugate acid	+ A ⁻ (<i>aq</i>) Conjugate base	
remains o		共軛鹼) : every molecule afte)	•	
		<mark>軛酸):</mark> forme d to the base.		
				9



Acid Strength
酸的強度依其平衡時解離的程度決定
$HA(aq) + H_2O(l) = H_3O^+(aq) + A^-(aq)$
Strong Acid:
Its equilibrium position lies far to the right. [例如: HNO _{3(aq)} → H ⁺ _(aq) + NO _{3⁻(aq)}] I Yields a weak conjugate base. (NO _{3⁻})
Weak Acid:
릙 Its equilibrium position lies far to the left. [例如: CH₃COOH _(aq) = H⁺ _(aq) + CH₃COO⁻ _(aq)]
Yields a much stronger (relatively strong) conjugate base than water. (CH ₃ COO ⁻) ¹²

TABLE 14.1 Various Ways to	Describe Acid Strengt	n
Property	Strong Acid	Weak Acid
$K_{\rm a}$ value	$K_{\rm a}$ is large	$K_{\rm a}$ is small
Position of the dissociation (ionization) equilibrium	Far to the right	Far to the left
Equilibrium concentration of H ⁺ compared with original concentration of HA	$\left[H^{+}\right]\approx\left[HA\right]_{0}$	$[\mathrm{H}^+] \ll [\mathrm{HA}]_0$
Strength of conjugate base	A ⁻ much weaker	A ⁻ much stronge

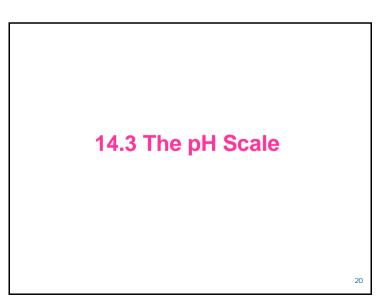
• monoprotic acid (單質子酸): 含 1 acidic proton, 如 HCI
• diprotic acid (雙質子酸):
含 2 acidic proton, 如 H_2SO_4
 triprotic acid (三質子酸):
含 3 acidic proton, 如 HCI
͡汆 Oxyacids (含氧酸):
the acidic proton 接於氧原子上,如 ${ m H}_2{ m SO}_4$
<mark>ॊ Organic acids (有機酸):</mark> 含 - COOH (carboxyl group)

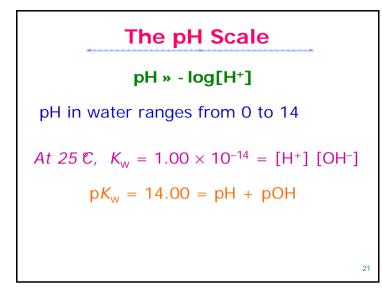
17

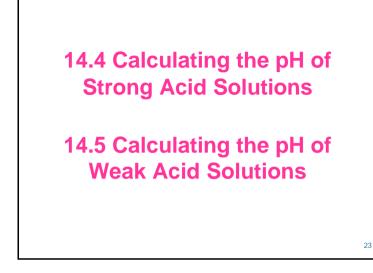
Formula	Name	Value of K_{a}^{*}	
HSO_4^-	Hydrogen sulfate ion	$1.2 imes 10^{-2}$	↑
HClO ₂	Chlorous acid	$1.2 imes10^{-2}$	
$HC_2H_2ClO_2$	Monochloracetic acid	$1.35 imes 10^{-3}$	
HF	Hydrofluoric acid	$7.2 imes10^{-4}$	
HNO_2	Nitrous acid	$4.0 imes10^{-4}$	
$HC_2H_3O_2$	Acetic acid	$1.8 imes 10^{-5}$	
[Al(H ₂ O) ₆] ³⁺	Hydrated aluminum(III) ion	$1.4 imes 10^{-5}$	
HOCI	Hypochlorous acid	$3.5 imes 10^{-8}$	
HCN	Hydrocyanic acid	$6.2 imes 10^{-10}$	
NH_4^+	Ammonium ion	$5.6 imes 10^{-10}$	
HOC ₆ H ₅	Phenol	$1.6 imes 10^{-10}$	

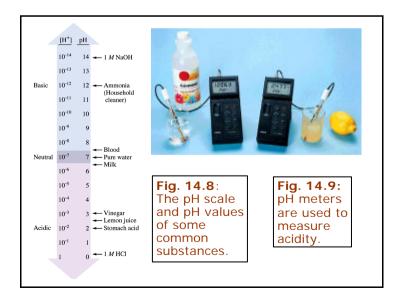
Water as an Acid and a Base

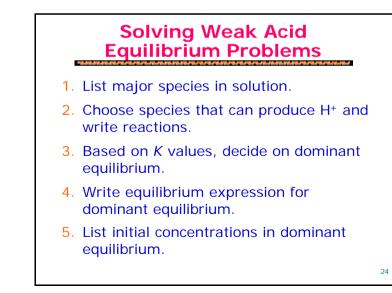
Water is *amphoteric* (it can behave either as an acid or a base).

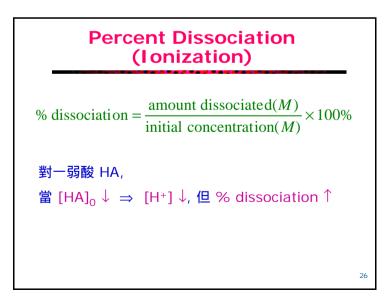

 $H_2O(I) + H_2O(I) = H_3O^+(aq) + OH^-(aq)$

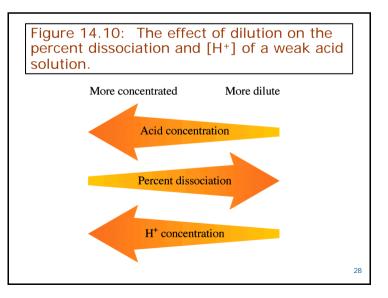

Ion-product constant (or dissociation constant):


 $K_{\rm w} = [H_3O^+][OH^-] = [H^+][OH^-]$


 $K_{\rm w}~=1 imes10^{-14}$ at 25 C

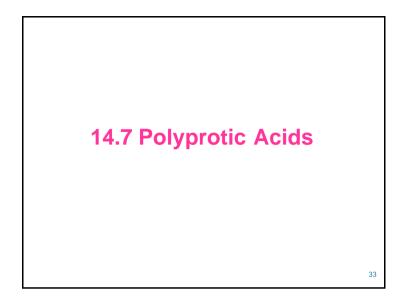

T[↑], K_w^\uparrow \Rightarrow indicating an endothermic process




- 6. Define change at equilibrium (as "x").
- 7. Write equilibrium concentrations in terms of *x*.
- 8. Substitute equilibrium concentrations into equilibrium expression.
- 9. Solve for x the "easy way."
- 10. Verify assumptions using 5% rule.
- 11.Calculate [H+] and pH.

Be systematic, flexible, patient, and confident.

An acetic acid solution, which is a weak electrolyte, contains only a few ions and does not conduct as much current as a strong electrolyte. The bulb is only dimly lit.



Bases ()
 Strong" and "weak" are used in the same sense for bases as for acids.
 strong = complete dissociation (hydroxide to solution)
 MaOH(s) → Na⁺(aq) + OH⁻(aq)
 weak = very little dissociation (or reaction with water)
 H₃CNH₂(aq)+H₂O(l) ↔ H₃CNH₃⁺(aq)+OH⁻(aq)

Ca(OH)₂: slaked lime 熟石灰 > 可用於除去工業煙囪所排放之SO₂ $SO_2(g) + H_2O(l) = H_2SO_3(aq)$ Ca(OH)₂(aq) + H₂SO₃(aq)=CaSO₃(s) + 2H₂O(l) > 可用於使硬水軟化 lime-soda process: 於水中加入 CaO+Na₂CO₃ $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2(aq)}$ $Ca(OH)_{2(aq)} + Ca^{2+}_{(aq)} + 2HCO_{3}^{-}_{(aq)} \rightarrow 2CaCO_{3(s)} + 2H_2O_{(l)}$ from hard water 31

Base	Acid (onjugate base	
$K_{b} = \frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{B}\right]}$				
	alues of <i>K</i> _b for Son	ne Common Weak B		
TABLE 14.3 Va		ne Common Weak B	ases K _b	
Name	alues of <i>K</i> _b for Son Formula	ne Common Weak B Conjugate Acid	K _b	
Name Ammonia	alues of <i>K</i> _b for Son Formula NH₃	ne Common Weak B Conjugate Acid NH4 ⁺	$\frac{K_{\rm b}}{1.8 \times 10^{-5}}$	
Name	alues of K _b for Son Formula NH ₃ CH ₃ NH ₂	ne Common Weak B Conjugate Acid NH4 ⁺ CH3NH3 ⁺	$K_{\rm b}$ 1.8 × 10 ⁻ 4.38 × 10 ⁻	
Name Ammonia Methylamine	alues of <i>K</i> _b for Son Formula NH₃	ne Common Weak B Conjugate Acid NH4 ⁺		

	se Dissociation C	Constants for Sev	eral Common Po	olyprotic Acids
Name	Formula	K_{a_1}	K _{a2}	K_{a_3}
Phosphoric acid	H_3PO_4	$7.5 imes 10^{-3}$	$6.2 imes 10^{-8}$	$4.8 imes10^{-13}$
Arsenic acid	H ₃ AsO ₄	$5 imes 10^{-3}$	$8 imes 10^{-8}$	$6 imes 10^{-10}$
Carbonic acid	H_2CO_3	4.3×10^{-7}	$5.6 imes 10^{-11}$	
Sulfuric acid	H_2SO_4	Large	$1.2 imes 10^{-2}$	
Sulfurous acid	H_2SO_3	$1.5 imes 10^{-2}$	1.0×10^{-7}	
Hydrosulfuric acid*	H_2S	1.0×10^{-7}	$\sim 10^{-19}$	
Oxalic acid	$H_2C_2O_4$	6.5×10^{-2}	6.1×10^{-5}	
Ascorbic acid	$H_2C_6H_6O_6$	$7.9 imes 10^{-5}$	1.6×10^{-12}	
(vitamin C)				
				35

Polyprotic Acids (多質子酸)

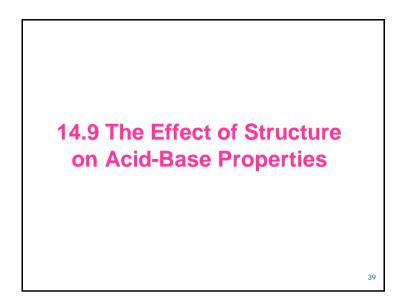
- can furnish more than one $\mathrm{H}^{\scriptscriptstyle +}$ to the solution

- dissociate in a stepwise manner 例如:

$$H_2CO_3 = H^+ + HCO_3^- \quad (K_{a_1})$$

$$HCO_3^{-} = H^+ + CO_3^{2-} (K_{a_2})$$

For a typical weak polyprotic acid,

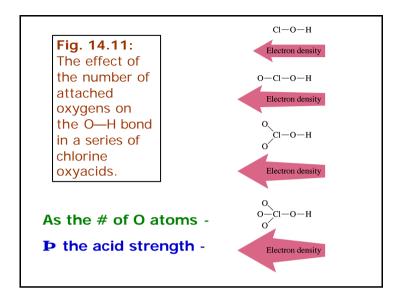

$$K_{a1} > K_{a2} > K_{a3}$$

34

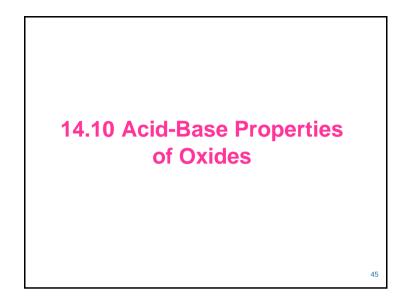
14.8 Acid-Base Properties of Salts

Туре	Cation (陽離子)	Anion (陰離子)	Acidic or Basic	Example
強酸強鹼鹽	neutral	neutral	neutral	NaCl
弱酸強鹼鹽	neutral	conj base of weak acid	basic	NaF
強酸弱鹼鹽	conj acid of weak base	neutral	acidic	NH ₄ Cl
弱酸弱鹼鹽	conj acid of weak base	conj base of weak acid	depends on K_a & K_b values	NH ₄ CN
	for Solu Which	tive Prediction utions of Salts Both Cation a cidic or Basic ies	for nd Anion	
	$K_{a} > K_{b}$ $K_{b} > K_{a}$ $K_{a} = K_{b}$	pH >	< 7 (acidic) > 7 (basic) = 7 (neutral)	37

Type of Salt	Examples	Comment	pH of Solution
Cation is from strong base; anion is from strong acid	KCl, KNO ₃ , NaCl, NaNO ₃	Neither acts as an acid or a base	Neutral
Cation is from strong base; anion is from weak acid	NaC ₂ H ₃ O ₂ , KCN, NaF	Anion acts as a base; cation has no effect on pH	Basic
Cation is conjugate acid of weak base; anion is from strong acid	NH ₄ Cl, NH ₄ NO ₃	Cation acts as acid; anion has no effect on pH	Acidic
Cation is conjugate acid of weak base; anion is conjugate base of weak acid	NH ₄ C ₂ H ₃ O ₂ , NH ₄ CN	Cation acts as an acid; anion acts as a base	Acidic if $K_a > K_b$ basic if $K_b > K_a$, neutral if $K_a = K_b$
Cation is highly charged metal ion; anion is from strong acid	Al(NO ₃) ₃ , FeCl ₃	Hydrated cation acts as an acid; anion has no effect on pH	Acidic

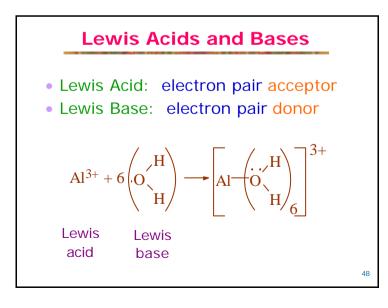

Structure and Acid-Base Properties

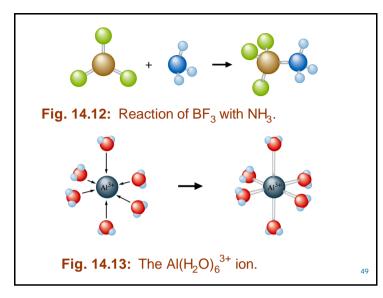
Two factors for acidity in binary compounds:

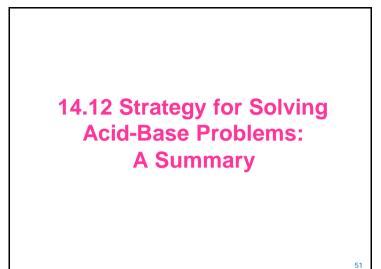

ℵ Bond Polarity (high is good)

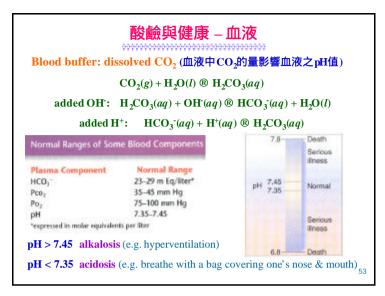

ℵ Bond Strength (low is good)

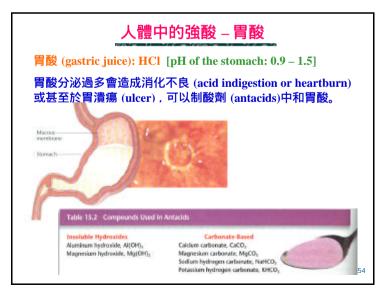
TABLE 14.8	Several Series of Oxyacids and Their Ka	/alues
Oxyacid	Structure	<i>K</i> _a Value
HCIO ₄	H-O-CI-O O	Large (~10 ⁷)
HCIO ₃	H—O—CI O	~1
HClO ₂	H—O—Cl—O	$1.2 imes 10^{-2}$
HCIO	H—O—Cl	$3.5 imes10^{-8}$
H ₂ SO ₄	H-O-S-O-H O	Large
H ₂ SO ₃	H-O-S O	$1.5 imes10^{-2}$
HNO ₃	H-O-N 0	Large
HNO ₂	H—O—N—O	$4.0 imes10^{-4}$

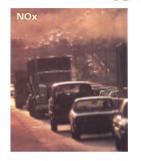



Acid	х	Electronegativity of X	K _a for Acid
HOCI	Cl	3.0	4×10^{-8}
HOBr	Br	2.8	$2 imes 10^{-9}$
IOI	Ι	2.5	$2 imes 10^{-11}$
HOCH ₃	CH ₃	2.3 (for carbon in CH ₃)	$\sim 10^{-15}$






TABLE 14.10	4.10 Three Models for Acids and Bases			
Model	Definition of Acid	Definition of Base		
Arrhenius Brønsted–Lowry Lewis	H ⁺ producer H ⁺ donor Electron-pair acceptor	OH ⁻ producer H ⁺ acceptor Electron-pair donor		
		50		


-	2	Look for reactions that can be assumed to go to completion—for example, a strong acid
	1	dissociating or H^+ reacting with OH^- .
-	3	For a reaction that can be assumed to go to completion:
		a. Determine the concentration of the products.
		b. Write down the major species in solution after the reaction.
-	4	Look at each major component of the solution and decide if it is an acid or a base.
-	5	Pick the equilibrium that will control the pH. Use known values of the dissociation constants for
		the various species to help decide on the dominant equilibrium.
		a. Write the equation for the reaction and the equilibrium expression.
		b. Compute the initial concentrations (assuming the dominant equilibrium has not yet occurred, that is, no acid dissociation, and so on).
		c. Define x.
		d. Compute the equilibrium concentrations in terms of <i>x</i> .
		e. Substitute the concentrations into the equilibrium expression, and solve for x.
		f. Check the validity of the approximation.
		g. Calculate the pH and other concentrations as required.
		though these steps may seem somewhat cumbersome, especially for simpler problems, they will

to manage.

環境中的酸鹼 – 酸雨

