

Chemical Equilibrium

- ℜ The state where the concentrations of all reactants and products remain constant with time.
- ℵ On the molecular level, there is frantic activity. Equilibrium is not static, but is a highly dynamic situation.

Fig. 13.1: A molecular representation of the reaction $2NO_2(g) \longrightarrow N_2O_4(g)$ over time in a closed vessel.

Notes on Equilibrium Expressions (EE)

- The equilibrium expression for a reaction is the reciprocal of that for the reaction written in reverse.
- When the equation for a reaction is multiplied by n, $K_{new} = (K_{original})^n$

11

K values are customarily written without units.

Experiment	Initial Concentrations	Equilibrium Concentrations	$\mathcal{K} = \frac{[NH_3]^2}{[N_2][H_2]^3}$
I	$[N_2]_0 = 1.000 M$ $[H_2]_0 = 1.000 M$ $[NH_3]_0 = 0$	$[N_2] = 0.921 M$ $[H_2] = 0.763 M$ $[NH_3] = 0.157 M$	$K = 6.02 \times 10^{-2}$
Ш	$[N_2]_0 = 0 [H_2]_0 = 0 [NH_3]_0 = 1.000 M$	$[N_2] = 0.399 M$ $[H_2] = 1.197 M$ $[NH_3] = 0.203 M$	$K = 6.02 \times 10^{-2}$
III	$[N_2]_0 = 2.00 M$ $[H_2]_0 = 1.00 M$ $[NH_3]_0 = 3.00 M$	$[N_2] = 2.59 M$ $[H_2] = 2.77 M$ $[NH_3] = 1.82 M$	$K = 6.02 \times 10^{-2}$
特定系統 衡位置(e	於特定溫度下 equilibrium p	,平衡常數 <i>K</i> osition)有無[〔 值恆定,但 限多種可能。

For

$$jA + kB = IC + mD$$

 $K_p = K(RT)^{Dn}$

D*n* = (sum of coefficients of gaseous products) – (sum of coefficients of gaseous reactants)

Sample exercises 13.4 & 13.5

14

Heterogeneous Equilibria

異相平衡: equilibria that involve more than one phase

例如:

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

 $K = [CO_2]$

The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids present.

R

Procedure for Solving Equilibrium Problems

- **1** Write the balanced equation for the reaction.
- 2 Write the equilibrium expression using the law of mass action.
- 3 List the initial concentrations.
- 4 Calculate *Q*, and determine the direction of the shift to equilibrium.
- 5 Define the change needed to reach equilibrium, and define the equilibrium concentrations by applying the change to the initial concentrations.
- 6 Substitute the equilibrium concentrations into the equilibrium expression, and solve for the unknown.
- 7 Check your calculated equilibrium concentrations by making sure they give the correct value of *K*.

See practice & sample exercise 13.12 in the textbook

13.7 Le Châtelier's Principle

23

Le Châtelier's Principle
If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change.
<mark>勒沙特列原理:</mark> 當一平衡系統受到一改變 時,平衡會朝向減少此改變的方向移動

TABLE 13.2	The Percent by Mass of NH ₃ at Equilibrium in a Mixture of
N ₂ , H ₂ , and NH	₃ as a Function of Temperature and Total Pressure*

25

26

	Total Pressure		
Temperature (°C)	300 atm	400 atm	500 atm
400	48% NH ₃	55% NH ₃	61% NH ₃
500	26% NH ₃	32% NH ₃	38% NH ₃
600	13% NH ₃	17% NH ₃	21% NH ₃

* Each experiment was begun with a 3:1 mixture of H2 and N2.

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

Friz Haber 研究發現於低溫高壓下,有利於NH₃的形成。

The effect of a change in concentration 於定溫定壓 (或定溫定容)下,化學平衡系統中若加入某一物種,平衡位置往減低該物種濃度的方向

移動;反之,若某一物種被移除,則平衡位置往提 高該物種濃度的方向移動。

* 若物種為純固體或液體,則不影響平衡。

Sample exercise 13.13

27

$_2(g) + 3H_2(g) = 2N$ TABLE 13.3 Observed Value of <i>K</i> Ammonia Synthesis as a Function of Ter	IH ₃ (g) + hea for the Reaction nperature*
Temperature (K)	К
500	90
600	3
700	0.3
800	0.04
$T\uparrow\Rightarrow K$	\downarrow

