1.3 Physical Foundations

Living cells and organisms must perform work to stay alive and to reproduce themselves

Living Organisms Exist in a Dynamic Steady State, Never at Equilibrium with Their Surroundings

 $\begin{array}{ccc} Precursors & \Longrightarrow & Hemoglobin & \Longrightarrow & Breakdown \ products \\ (amino \ acid) & \hline{\color{red} r_1} & \hline{\color{red} r_2} & (amino \ acid) \end{array}$

When $r_1 = r_2$ [hemoglobin]=const

在動力學上。稱為 Steady State,但非 Equilibrium!

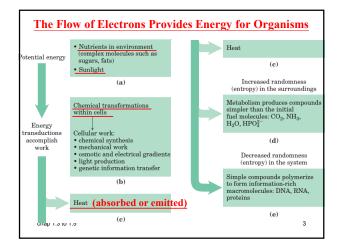
chap 1.3 to 1.5

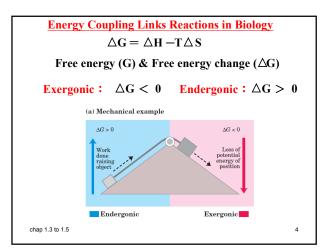
Organisms Transform Energy and Matter from Their Surroundings System

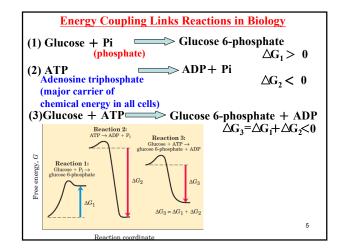
Universe System

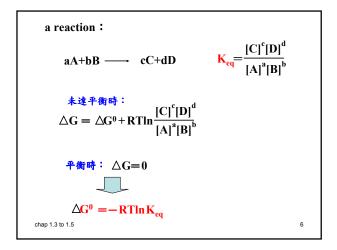
Surroundings

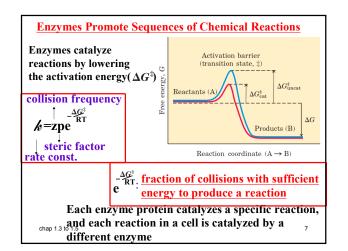
closed system: the system exchanges energy but not

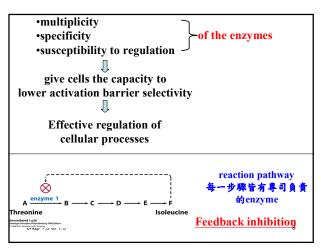

matter

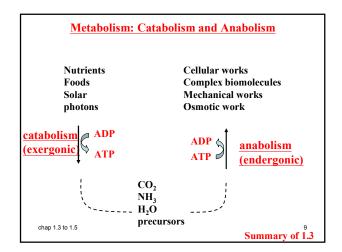

open system: exchanges energy and matter

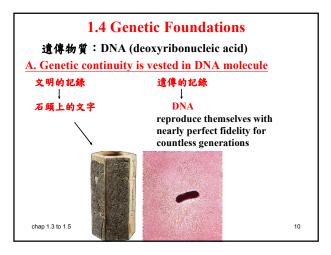

isolated system: exchanges neither energy nor matter

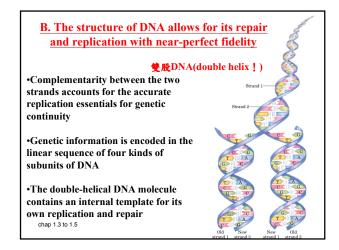

Living organism is an open system

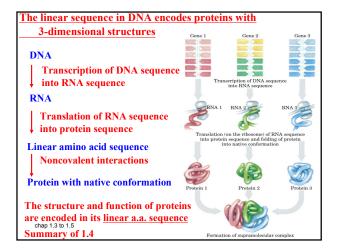

- Living organisms create and maintain their complex, orderly structure using energy extracted from fuels or sunlight.
- •In any physical or chemical change, the total amount of energy in the universe remains const.

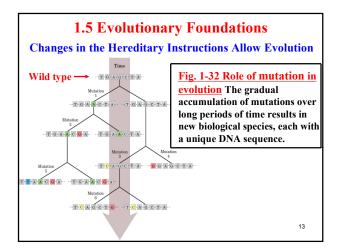


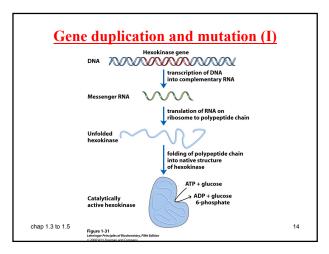


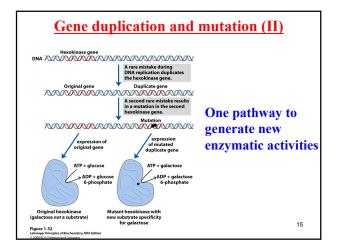


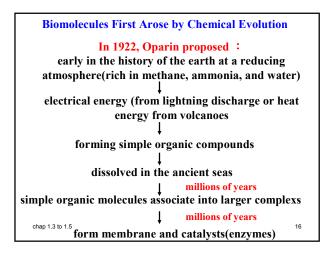


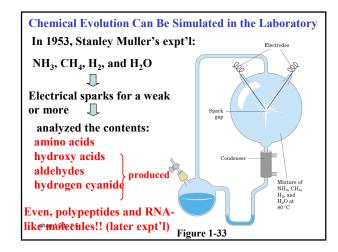


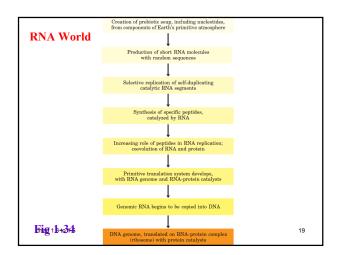


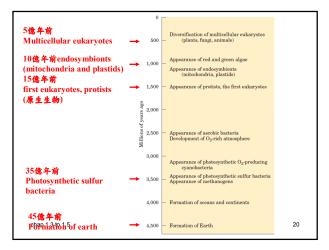


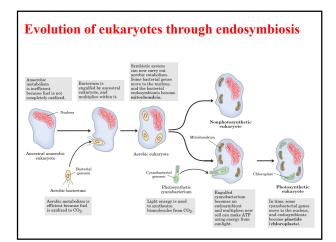


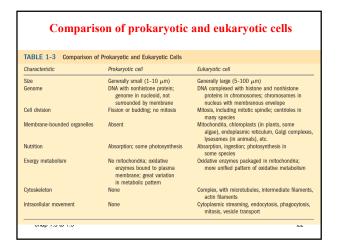





In conclusion,
many biomolecules, under prebiotic condition can be
formed: including
polypeptides and RNA-like molecules (as catalyst)


Protein
Whether life also arose on the planets of other solar systems?


RNA or Related Precursors May Have Been the First
Genes and Catalysts

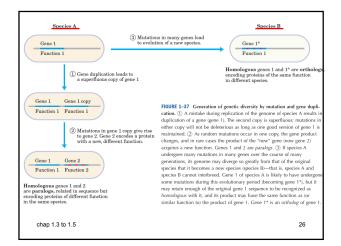

RNA can act as catalysts on their own formation

RNA may have been the first catalyst and first gene
18

Molecular anatomy reveals evolutionary relationships

- · Relatedness of species:
 - 18 century, anatomic similarities and differences among organisms (Linnaeus)
 - 19 century, phylogeny of modern organisms (Darwin)
 - 20 century, 'molecular anatomy': sequences and three-dimensional structure of nucleic acids and proteins
- Genome (the complete endowment of an organism)
- Some organisms whose genomes have been completely sequenced: (see table 1.2)

chap 1.3 to 1.5


23

Organism	Genome size (millions of nucleotide pairs)	Number of genes	Biological interest
Mycoplasma genitalium	0.58	483	Smallest true organism
Treponema pallidum	1.1	1,039	Causes syphilis
Borrelia burgdorferi	1.44	1,738	Causes Lyme disease
Helicobacter pylori	1.7	1,589	Causes gastric ulcers
Methanococcus jannaschii	1.7	1,783	Archaean; grows at 85 °C!
Haemophilus influenzae	1.8	1,738	Causes bacterial influenza
Archaeoglobus fulgidus*	2.2	-	High-temperature methanoger
Synechocystis sp.	3.6	4,003	Cyanobacterium
Bacillus subtilis	4.2	4,779	Common soil bacterium
Escherichia coli	4.6	4,377	Some strains cause toxic shock syndrome
Saccharomyces cerevisiae	12.5	5,770	Unicellular eukaryote
Plasmodium falciparum	23	5,268	Causes human malaria
Caenorhabditis elegans	100	19,400	Multicellular roundworm
Anopheles gambiae	278	13,700	Malaria vector
Arabidopsis thaliana	157	25,500	Model plant
Oryza sativa	390	37,500	Rice
Drosophila melanogaster	140	13,000	Laboratory fly ("fruit fly")
Mus musculus domesticus	2.4 × 10 ³	25,000	Laboratory mouse
Pan troglodytes	2.4 × 10 ³	25,000	Chimpanzee
Homo sapiens	2.9 × 10 ³	25,000	Human

Molecular phylogeny is derived from gene sequences

- When two genes DNA or protein share detectable sequence similarities, their sequences are 'homologous' and the proteins they encode are 'homologs'.
- Two homologous genes occur in the same species, they are 'paralogous' and the proteins are 'paralogs'.
- Two homologous genes occur in the different species, they are 'orthologous' and the proteins are 'orthologs'. Annotated genome includes (1) DNA sequence, and (2) a description of the likely function of each gene product (deduced from comparisons with other genomic sequences and established protein function).

chap 1.3 to 1.5

Molecular phylogeny is derived from gene sequences

- The sequence differences between two homologous genes may be taken as a measure of the degree to which the two species have diverged during evolution.
- The larger the number of sequence differences, the earlier the divergence in evolutionary history.
- Phylogeny (family tree) (see fig. 1-4)

chap 1.3 to 1.5 27